翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Yetter–Drinfeld module : ウィキペディア英語版
Yetter–Drinfeld category
In mathematics a Yetter–Drinfeld category is a special type of braided monoidal category. It consists of modules over a Hopf algebra which satisfy some additional axioms.
== Definition ==

Let ''H'' be a Hopf algebra over a field ''k''. Let \Delta denote the coproduct and ''S'' the antipode of ''H''. Let ''V'' be a vector space over ''k''. Then ''V'' is called a (left left) Yetter–Drinfeld module over ''H'' if
* (V,\boldsymbol) is a left ''H''-module, where \boldsymbol: H\otimes V\to V denotes the left action of ''H'' on ''V'' and ⊗ denotes a tensor product,
* (V,\delta\;) is a left ''H''-comodule, where \delta : V\to H\otimes V denotes the left coaction of ''H'' on ''V'',
* the maps \boldsymbol and \delta satisfy the compatibility condition
:: \delta (h\boldsymbolv)=h_v_S(h_)
\otimes h_\boldsymbolv_ for all h\in H,v\in V,
:where, using Sweedler notation, (\Delta \otimes \mathrm)\Delta (h)=h_\otimes h_
\otimes h_ \in H\otimes H\otimes H denotes the twofold coproduct of h\in H , and \delta (v)=v_\otimes v_ .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Yetter–Drinfeld category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.